Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate in Room-Temperature Ionic Liquids
نویسندگان
چکیده
The reverse atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was successfully carried out in 1-butyl-3-methylimidazolium hexafluorophosphate with 2,2 -azobisisobutyronitrile/CuCl2/bipyridine as the initiating system, which had been reported as not able to promote a controlled process of MMA in bulk. The living nature of the polymerization was confirmed by kinetic studies, endgroup analysis, chain extension, and block copolymerization results. The polydispersity of the polymer obtained was quite narrow, with a weight-average molecular weight/ number-average molecular weight ratio of less than 1.2. In comparison with other reverse ATRPs in bulk or conventional solvents, a much smaller amount of the catalyst was used. After a relatively easy removal of the polymer and residue monomer, the ionic liquid and catalytic system could be reused without further treatment. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 143–151, 2003
منابع مشابه
A Novel Initiator of [5-(benzyloxy)-4-oxo-4H-pyran-2-yl]methyl-2-bromo-2-methylpropanoateas in Atom Transfer Radical Polymerization of Styrene and Methyl Methacrylate
A novel nano-initiator containing kojic acid moiety, [5-(benzyloxy)-4-oxo-4H-pyran-2-yl)methyl-2-bromo-2-methylpropanoate was synthesized by the reaction of 5-(benzyloxy)-2-(hydroxymethyl)-4H-pyran-4-one with 2-bromoisobutyryl bromide in triethylamine and used as initiator in the atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate in the presence of Cu(0)/CuCl2and N,N...
متن کاملActivator Generated Electron Transfer Combined Atom Transfer Radical Polymerization (AGET-ATRP) for Controlled Grafting Location of Glycidyl Methacrylate on Regenerated Cellulose Ultrafiltration Membranes
This investigation indicates the ability to selectively graft glycidyl methacrylate (GMA) only from the external surface of regenerated cellulose (RC) ultrafiltration (UF) membranes using activator generated electron transfer (AGET) atom transfer radical polymerization (ATRP). This controlled polymerization resulted in epoxy functionalized polymer brush ends. Further reaction of the terminal ep...
متن کاملSynergistic Effect of 1-Butyl-3-methylimidazolium Hexafluorophosphate and DMSO in the SARA ATRP at Room Temperature Affording Very Fast Reactions and Polymers with Very Low Dispersity
An unusual synergistic effect between 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) and dimethyl sulfoxide (DMSO) mixtures is reported for the supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) of methyl acrylate (MA) using a catalytic system composed by sodium dithionate (Na2S2O4) and CuBr2/Me6TREN (Me6TREN: tris[2-(dimethylamino)ethyl]amine...
متن کاملSynthesis of Cellulose-graft-poly(methyl Methacrylate) via Homogeneous Atrp
Cellulose-graft-poly(methylmethacrylate) (cellulose-g-PMMA) copolymers were prepared by homogeneous atom transfer radical polymerization (ATRP) under mild conditions, in an attempt to develop an efficient way to modify the surface of cellulose. A cellulose macro-initiator was successfully synthesized by direct homogeneous acylation of cellulose with 2-bromopropionyl bromide in a room temperatur...
متن کاملAdvanced Applications of Ionic Liquids in Polymer Science
During past few years, ionic liquids have kept attracting much attention as “green and designer” media for chemical reactions. Room-temperature ionic liquids have emerged as a potential replacement for organic solvents in catalytic processes on both laboratory and industrial scales (Holbrey & Seddon, 1999b). Literature reports on a wide range of reactions including advances in alkylation reacti...
متن کامل